The Kirillov picture for the Wigner particle
محفوظ في:
| المؤلفون: | , , , |
|---|---|
| التنسيق: | artículo original |
| تاريخ النشر: | 2018 |
| الوصف: | We discuss the Kirillov method for massless Wigner particles, usually (mis)named "continuous spin" or "infinite spin" particles. These appear in Wigner's classification of the unitary representations of the Poincaré group, labelled by elements of the enveloping algebra of the Poincaré Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described. |
| البلد: | Kérwá |
| المؤسسة: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/81786 |
| الوصول للمادة أونلاين: | https://iopscience.iop.org/article/10.1088/1751-8121/aac3b3 https://hdl.handle.net/10669/81786 |
| كلمة مفتاحية: | Wigner particle Continuous spin Coadjoint orbits |