The Kirillov picture for the Wigner particle

 

保存先:
書誌詳細
著者: Gracia Bondía, José M., Lizzi, Fedele, Várilly Boyle, Joseph C., Vitale, Patrizia
フォーマット: artículo original
出版日付:2018
その他の書誌記述:We discuss the Kirillov method for massless Wigner particles, usually (mis)named "continuous spin" or "infinite spin" particles. These appear in Wigner's classification of the unitary representations of the Poincaré group, labelled by elements of the enveloping algebra of the Poincaré Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described.
国:Kérwá
機関:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/81786
オンライン・アクセス:https://iopscience.iop.org/article/10.1088/1751-8121/aac3b3
https://hdl.handle.net/10669/81786
キーワード:Wigner particle
Continuous spin
Coadjoint orbits