An Empirical Validation of an Automated Genetic Software Effort Prediction Framework Using the ISBSG Dataset

 

Guardado en:
Detalles Bibliográficos
Autores: Murillo Morera, Juan, Quesada López, Christian Ulises, Castro Herrera, Carlos, Jenkins Coronas, Marcelo
Formato: contribución de congreso
Fecha de Publicación:2016
Descripción:The complexity of providing accurate software effort prediction models is well known in the software industry. Several prediction models have been proposed in the literature using different techniques, with different results, in different contexts. Objectives: This paper reports a benchmarking study using a genetic approach that automatically generates and compares different learning schemes (preprocessing+attribute selection+learning algorithms). The effectiveness of the software development effort prediction models (using function points) were validated using the ISBSG R12 dataset. Methods: Eight subsets of projects were analyzed running a M×N-fold cross-validation. We used a genetic approach to automatically select the components of the learning schemes, to evaluate, and to report the learning scheme with the best performance. Results: In total, 150 learning schemes were studied (2 data preprocessors, 5 attribute selectors, and 15 modeling techniques). The most common learning schemes were: Log+ForwardSelection+M5-Rules, Log+BestFirst+M5-Rules, Log+LinearForwardSelection+SMOreg, ForwardSelection+SMOreg and ForwardSelection+ SMOreg, BackwardElimination+SMOreg, LinearForwardSelection+SMOreg, and Log+Best First+SMOreg. Conclusions: The results show that we should select a different learning schemes for each datasets. Our results support previous findings regarding that the setup applied in evaluations can completely reverse findings. A genetic approach that automatically selects best combination based on a specific dataset could improve the performance of software effort prediction models.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/73965
Acceso en línea:https://hdl.handle.net/10669/73965
Palabra clave:Effort prediction model
Learning schemes
Genetic approach
Experiment
ISBSG dataset
Function points