The Dirac operator on SU_q(2)
Saved in:
Authors: | , , , , |
---|---|
Format: | artículo original |
Publication Date: | 2005 |
Description: | We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order. |
Country: | Kérwá |
Institution: | Universidad de Costa Rica |
Repositorio: | Kérwá |
Language: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89094 |
Online Access: | https://link.springer.com/article/10.1007/s00220-005-1383-9 https://hdl.handle.net/10669/89094 |
Keyword: | GEOMETRY MATHEMATICS |