The Dirac operator on SU_q(2)

 

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
লেখক: Dabrowski, Ludwik, Landi, Giovanni, Sitarz, Andrzej, Van Suijlekom, Walter, Várilly Boyle, Joseph C.
বিন্যাস: artículo original
প্রকাশনার তারিখ:2005
বিবরন:We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.
দেশ:Kérwá
প্রতিষ্ঠান:Universidad de Costa Rica
Repositorio:Kérwá
ভাষা:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89094
অনলাইন ব্যবহার করুন:https://link.springer.com/article/10.1007/s00220-005-1383-9
https://hdl.handle.net/10669/89094
মুখ্য শব্দ:GEOMETRY
MATHEMATICS