The Dirac operator on SU_q(2)
保存先:
著者: | , , , , |
---|---|
フォーマット: | artículo original |
出版日付: | 2005 |
その他の書誌記述: | We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order. |
国: | Kérwá |
機関: | Universidad de Costa Rica |
Repositorio: | Kérwá |
言語: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89094 |
オンライン・アクセス: | https://link.springer.com/article/10.1007/s00220-005-1383-9 https://hdl.handle.net/10669/89094 |
キーワード: | GEOMETRY MATHEMATICS |