The Dirac operator on SU_q(2)
        Sparad:
      
    
                  | Författarna: | , , , , | 
|---|---|
| Materialtyp: | artículo original | 
| Utgivningstid: | 2005 | 
| Beskrivning: | We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order. | 
| Land: | Kérwá | 
| Organisation: | Universidad de Costa Rica | 
| Repositorio: | Kérwá | 
| Språk: | Inglés | 
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89094 | 
| Länkar: | https://link.springer.com/article/10.1007/s00220-005-1383-9 https://hdl.handle.net/10669/89094  | 
| Nyckelord: | GEOMETRY MATHEMATICS  |