Alzheimer’s Disease Early Detection Using a Low Cost Three-Dimensional Densenet-121 Architecture

 

Guardado en:
Detalles Bibliográficos
Autores: Solano Rojas, Braulio José, Villalón Fonseca, Ricardo, Marín Raventós, Gabriela
Formato: contribución de congreso
Fecha de Publicación:2020
Descripción:The objective of this work is to detect Alzheimer’s disease using Magnetic Resonance Imaging. For this, we use a three-dimensional densenet-121 architecture. With the use of only freely available tools, we obtain good results: a deep neural network showing metrics of 87% accuracy, 87% sensitivity (micro-average), 88% specificity (micro-average), and 92% AUROC (micro-average) for the task of classifying five different classes (disease stages). The use of tools available for free means that this work can be replicated in developing countries.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/81345
Acceso en línea:https://link.springer.com/chapter/10.1007/978-3-030-51517-1_1
https://hdl.handle.net/10669/81345
Palabra clave:Alzheimer
Deep learning
MRI
Computer-aided detection
Computer-aided diagnosis