Multistability in macrophage activation pathways and metabolic implications

 

Guardado en:
Detalles Bibliográficos
Autores: Geiß, Carsten, Salas Hidalgo, Elvira, Guevara Coto, José Andrés, Régnier Vigouroux, Anne, Mora Rodríguez, Rodrigo Antonio
Formato: artículo original
Fecha de Publicación:2022
Descripción:Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory diseases and relevant therapies. Common regulatory motifs reported for macrophage transitions, such as positive or double-negative feedback loops, exhibit a switchlike behavior, suggesting the bistability of the system. In this review, we explore the evidence for multistability (including bistability) in macrophage activation pathways at four molecular levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1, NF-KB/p50-p65) and M2 (STAT3, NF-KB/p50-p50) signaling pathways. Second, a switchlike behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, these changes impact metabolic gene expression, leading to switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis, and nitrogen metabolism. Fourth, metabolic changes are monitored by metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining signals promoting M1 or M2 activation. In conclusion, we identify bistability hubs as promising therapeutic targets for reverting or blocking macrophage transitions through modulation of the metabolic environment.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
Lenguaje:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/100125
Acceso en línea:https://hdl.handle.net/10669/100125
https://doi.org/10.3390/cells11030404
Palabra clave:MACROPHAGE
BISTABILITY
MULTISTABILITY
METABOLISM
SYSTEMS BIOLOGY