On summability of distributions and spectral geometry

 

Tallennettuna:
Bibliografiset tiedot
Tekijät: Estrada Navas, Ricardo, Gracia Bondía, José M., Várilly Boyle, Joseph C.
Aineistotyyppi: artículo original
Julkaisupäivä:1998
Kuvaus:Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.
Maa:Kérwá
Organisaatio:Universidad de Costa Rica
Repositorio:Kérwá
Kieli:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/87799
Linkit:https://link.springer.com/article/10.1007/s002200050266
https://hdl.handle.net/10669/87799
Sanahaku:teoría Cesàro de distribuciones
desarrollos asintóticos
geometría no conmutativa
GEOMETRÍA
MATEMÁTICAS