On summability of distributions and spectral geometry

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Estrada Navas, Ricardo, Gracia Bondía, José M., Várilly Boyle, Joseph C.
Μορφή: artículo original
Ημερομηνία έκδοσης:1998
Περιγραφή:Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.
Χώρα:Kérwá
Ίδρυμα:Universidad de Costa Rica
Repositorio:Kérwá
Γλώσσα:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/87799
Διαθέσιμο Online:https://link.springer.com/article/10.1007/s002200050266
https://hdl.handle.net/10669/87799
Λέξη-Κλειδί :teoría Cesàro de distribuciones
desarrollos asintóticos
geometría no conmutativa
GEOMETRÍA
MATEMÁTICAS