On summability of distributions and spectral geometry
保存先:
著者: | , , |
---|---|
フォーマット: | artículo original |
出版日付: | 1998 |
その他の書誌記述: | Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development. |
国: | Kérwá |
機関: | Universidad de Costa Rica |
Repositorio: | Kérwá |
言語: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/87799 |
オンライン・アクセス: | https://link.springer.com/article/10.1007/s002200050266 https://hdl.handle.net/10669/87799 |
キーワード: | teoría Cesàro de distribuciones desarrollos asintóticos geometría no conmutativa GEOMETRÍA MATEMÁTICAS |