On summability of distributions and spectral geometry

 

Kaydedildi:
Detaylı Bibliyografya
Yazarlar: Estrada Navas, Ricardo, Gracia Bondía, José M., Várilly Boyle, Joseph C.
Materyal Türü: artículo original
Yayın Tarihi:1998
Diğer Bilgiler:Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.
Ülke:Kérwá
Kurum:Universidad de Costa Rica
Repositorio:Kérwá
Dil:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/87799
Online Erişim:https://link.springer.com/article/10.1007/s002200050266
https://hdl.handle.net/10669/87799
Anahtar Kelime:teoría Cesàro de distribuciones
desarrollos asintóticos
geometría no conmutativa
GEOMETRÍA
MATEMÁTICAS