On summability of distributions and spectral geometry
Đã lưu trong:
Nhiều tác giả: | , , |
---|---|
Định dạng: | artículo original |
Ngày xuất bản: | 1998 |
Miêu tả: | Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development. |
Quốc gia: | Kérwá |
Tổ chức giáo dục: | Universidad de Costa Rica |
Repositorio: | Kérwá |
Ngôn ngữ: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/87799 |
Truy cập trực tuyến: | https://link.springer.com/article/10.1007/s002200050266 https://hdl.handle.net/10669/87799 |
Từ khóa: | teoría Cesàro de distribuciones desarrollos asintóticos geometría no conmutativa GEOMETRÍA MATEMÁTICAS |