On summability of distributions and spectral geometry

 

שמור ב:
מידע ביבליוגרפי
Autores: Estrada Navas, Ricardo, Gracia Bondía, José M., Várilly Boyle, Joseph C.
פורמט: artículo original
Fecha de Publicación:1998
תיאור:Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.
País:Kérwá
מוסד:Universidad de Costa Rica
Repositorio:Kérwá
שפה:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/87799
גישה מקוונת:https://link.springer.com/article/10.1007/s002200050266
https://hdl.handle.net/10669/87799
מילת מפתח:teoría Cesàro de distribuciones
desarrollos asintóticos
geometría no conmutativa
GEOMETRÍA
MATEMÁTICAS