On summability of distributions and spectral geometry
שמור ב:
| Autores: | , , |
|---|---|
| פורמט: | artículo original |
| Fecha de Publicación: | 1998 |
| תיאור: | Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development. |
| País: | Kérwá |
| מוסד: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| שפה: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/87799 |
| גישה מקוונת: | https://link.springer.com/article/10.1007/s002200050266 https://hdl.handle.net/10669/87799 |
| מילת מפתח: | teoría Cesàro de distribuciones desarrollos asintóticos geometría no conmutativa GEOMETRÍA MATEMÁTICAS |