On summability of distributions and spectral geometry

 

保存先:
書誌詳細
著者: Estrada Navas, Ricardo, Gracia Bondía, José M., Várilly Boyle, Joseph C.
フォーマット: artículo original
出版日付:1998
その他の書誌記述:Modulo the moment asymptotic expansion, the Cesàro and parametric behaviours of distributions at infinity are equivalent. On the strength of this result, we construct the asymptotic analysis for spectral densities arising from elliptic pseudodifferential operators. We show how Cesàro developments lead to efficient calculations of the expansion coefficients of counting number functionals and Green functions. The bosonic action functional proposed by Chamseddine and Connes can more generally be validated as a Cesàro asymptotic development.
国:Kérwá
機関:Universidad de Costa Rica
Repositorio:Kérwá
言語:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/87799
オンライン・アクセス:https://link.springer.com/article/10.1007/s002200050266
https://hdl.handle.net/10669/87799
キーワード:teoría Cesàro de distribuciones
desarrollos asintóticos
geometría no conmutativa
GEOMETRÍA
MATEMÁTICAS