Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques

 

Guardado en:
书目详细资料
Autores: Barboza Chinchilla, Luis Alberto, Chou Chen, Shu Wei, Vásquez Brenes, Paola Andrea, García Puerta, Yury Elena, Calvo Alpízar, Juan Gabriel, Hidalgo León, Hugo G., Sánchez Peña, Fabio Ariel
格式: artículo original
Fecha de Publicación:2023
实物特征:Dengue fever is a vector-borne disease affecting millions yearly, mostly in tropical and subtropical countries. Driven mainly by social and environmental factors, dengue incidence and geographical expansion have increased in recent decades. Therefore, understanding how climate variables drive dengue outbreaks is challenging and a problem of interest for decision-makers that could aid in improving surveillance and resource allocation. Here, we explore the effect of climate variables on relative dengue risk in 32 cantons of interest for public health authorities in Costa Rica. Relative dengue risk is forecast using a Generalized Additive Model for location, scale, and shape and a Random Forest approach. Models use a training period from 2000 to 2020 and predicted climatic variables obtained with a vector auto-regressive model. Results show reliable projections, and climate variables predictions allow for a prospective instead of a retrospective study
País:Kérwá
机构:Universidad de Costa Rica
Repositorio:Kérwá
语言:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89286
在线阅读:https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0011047
https://hdl.handle.net/10669/89286
Palabra clave:RISK
CLIMATE
COSTA RICA
Dengue fever