Algebras of distributions suitable for phase-space quantum mechanics. III. The dual space of the algebra L_b(S)
Сохранить в:
| Авторы: | , , |
|---|---|
| Формат: | artículo preliminar |
| Дата публикации: | 1989 |
| Описание: | The strong dual space of the topological algebra L_b(S), where S is the Schwartz space of smooth declining functions on R, may be obtained as an inductive limit of projective limits of Hilbert spaces. To that end, we construct a symbol calculus for elements of L_b(S,S'). We show that the dual space is a dense ideal in L_b(S) itself, and can be given the structure of a Q-algebra with continuous quasiinversion. |
| Страна: | Kérwá |
| Институт: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Язык: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/86592 |
| Online-ссылка: | https://hdl.handle.net/10669/86592 |
| Ключевое слово: | Quantum mechanics in phase space Topological algebras Schwartz |