A mathematical model with nonlinear relapse: conditions for a forward-backward bifurcation
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo original |
Fecha de Publicación: | 2023 |
Descripción: | We constructed a Susceptible-Addicted-Reformed model and explored the dynamics of nonlinear relapse in the Reformed population. The transition from susceptible considered at-risk is modeled using a strictly decreasing general function, mimicking an influential factor that reduces the flow into the addicted class. The basic reproductive number is computed, which determines the local asymptotically stability of the addicted-free equilibrium. Conditions for a forward-backward bifurcation were established using the basic reproductive number and other threshold quantities. A stochastic version of the model is presented, and some numerical examples are shown. Results showed that the influence of the temporarily reformed individuals is highly sensitive to the initial addicted population. |
País: | Kérwá |
Institución: | Universidad de Costa Rica |
Repositorio: | Kérwá |
Lenguaje: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/90119 |
Acceso en línea: | https://www.tandfonline.com/doi/full/10.1080/17513758.2023.2192238 https://hdl.handle.net/10669/90119 |
Palabra clave: | ADDICTION MATHEMATICAL MODELS MATHEMATICS NONLINEAR DYNAMICS |