A mathematical model with nonlinear relapse: conditions for a forward-backward bifurcation

 

Guardado en:
书目详细资料
Autores: Sánchez Peña, Fabio Ariel, Arroyo Esquivel, Jorge, Calvo Alpízar, Juan Gabriel
格式: artículo original
Fecha de Publicación:2023
实物特征:We constructed a Susceptible-Addicted-Reformed model and explored the dynamics of nonlinear relapse in the Reformed population. The transition from susceptible considered at-risk is modeled using a strictly decreasing general function, mimicking an influential factor that reduces the flow into the addicted class. The basic reproductive number is computed, which determines the local asymptotically stability of the addicted-free equilibrium. Conditions for a forward-backward bifurcation were established using the basic reproductive number and other threshold quantities. A stochastic version of the model is presented, and some numerical examples are shown. Results showed that the influence of the temporarily reformed individuals is highly sensitive to the initial addicted population.
País:Kérwá
机构:Universidad de Costa Rica
Repositorio:Kérwá
语言:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/90119
在线阅读:https://www.tandfonline.com/doi/full/10.1080/17513758.2023.2192238
https://hdl.handle.net/10669/90119
Palabra clave:ADDICTION
MATHEMATICAL MODELS
MATHEMATICS
NONLINEAR DYNAMICS