Incorporating variable viscosity in vorticity-based formulations for Brinkman equations

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Anaya Domínguez, Verónica, Gómez Vargas, Bryan Andrés, Mora Herrera, David, Ruiz Baier, Ricardo
Μορφή: artículo original
Ημερομηνία έκδοσης:2019
Περιγραφή:In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity, and pressure with non-constant viscosity. The analysis is performed by the classical Babuška–Brezzi theory, and we state that any inf–sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates, which are further confirmed through computational examples.
Χώρα:Kérwá
Ίδρυμα:Universidad de Costa Rica
Repositorio:Kérwá
Γλώσσα:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/86463
Διαθέσιμο Online:https://hdl.handle.net/10669/86463
Λέξη-Κλειδί :Brinkman Equations