Incorporating variable viscosity in vorticity-based formulations for Brinkman equations
محفوظ في:
| المؤلفون: | , , , |
|---|---|
| التنسيق: | artículo original |
| تاريخ النشر: | 2019 |
| الوصف: | In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity, and pressure with non-constant viscosity. The analysis is performed by the classical Babuška–Brezzi theory, and we state that any inf–sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates, which are further confirmed through computational examples. |
| البلد: | Kérwá |
| المؤسسة: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| اللغة: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/86463 |
| الوصول للمادة أونلاين: | https://hdl.handle.net/10669/86463 |
| كلمة مفتاحية: | Brinkman Equations |