Fourier analysis on the affine group, quantization and noncompact Connes geometries
Kaydedildi:
| Yazarlar: | , , |
|---|---|
| Materyal Türü: | artículo original |
| Yayın Tarihi: | 2008 |
| Diğer Bilgiler: | We find the Stratonovich-Weyl quantizer for the nonunimodular affine group of the line. A noncommutative product of functions on the half-plane, underlying a noncompact spectral triple in the sense of Connes, is obtained from it. The corresponding Wigner functions reproduce the time-frequency distributions of signal processing. The same construction leads to scalar Fourier transformations on the affine group, simplifying and extending the Fourier transformation proposed by Kirillov. |
| Ülke: | Kérwá |
| Kurum: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Dil: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89212 |
| Online Erişim: | https://ems.press/journals/jncg/articles/1466 https://hdl.handle.net/10669/89212 |
| Anahtar Kelime: | cuantización de Moyal geometría no conmutativa transformada de Fourier |