Fourier analysis on the affine group, quantization and noncompact Connes geometries
Guardado en:
| Autores: | , , |
|---|---|
| Format: | artículo original |
| Fecha de Publicación: | 2008 |
| Beskrivelse: | We find the Stratonovich-Weyl quantizer for the nonunimodular affine group of the line. A noncommutative product of functions on the half-plane, underlying a noncompact spectral triple in the sense of Connes, is obtained from it. The corresponding Wigner functions reproduce the time-frequency distributions of signal processing. The same construction leads to scalar Fourier transformations on the affine group, simplifying and extending the Fourier transformation proposed by Kirillov. |
| País: | Kérwá |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Sprog: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89212 |
| Online adgang: | https://ems.press/journals/jncg/articles/1466 https://hdl.handle.net/10669/89212 |
| Palabra clave: | cuantización de Moyal geometría no conmutativa transformada de Fourier |