Fourier analysis on the affine group, quantization and noncompact Connes geometries
Uloženo v:
| Autoři: | , , |
|---|---|
| Médium: | artículo original |
| Datum vydání: | 2008 |
| Popis: | We find the Stratonovich-Weyl quantizer for the nonunimodular affine group of the line. A noncommutative product of functions on the half-plane, underlying a noncompact spectral triple in the sense of Connes, is obtained from it. The corresponding Wigner functions reproduce the time-frequency distributions of signal processing. The same construction leads to scalar Fourier transformations on the affine group, simplifying and extending the Fourier transformation proposed by Kirillov. |
| Země: | Kérwá |
| Instituce: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Jazyk: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89212 |
| On-line přístup: | https://ems.press/journals/jncg/articles/1466 https://hdl.handle.net/10669/89212 |
| Klíčové slovo: | cuantización de Moyal geometría no conmutativa transformada de Fourier |