Fourier analysis on the affine group, quantization and noncompact Connes geometries
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo original |
Fecha de Publicación: | 2008 |
Descripción: | We find the Stratonovich-Weyl quantizer for the nonunimodular affine group of the line. A noncommutative product of functions on the half-plane, underlying a noncompact spectral triple in the sense of Connes, is obtained from it. The corresponding Wigner functions reproduce the time-frequency distributions of signal processing. The same construction leads to scalar Fourier transformations on the affine group, simplifying and extending the Fourier transformation proposed by Kirillov. |
País: | Kérwá |
Institución: | Universidad de Costa Rica |
Repositorio: | Kérwá |
Lenguaje: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89212 |
Acceso en línea: | https://ems.press/journals/jncg/articles/1466 https://hdl.handle.net/10669/89212 |
Palabra clave: | cuantización de Moyal geometría no conmutativa transformada de Fourier |