A Geometric Splitting Theorem
保存先:
| 著者: | |
|---|---|
| フォーマット: | documento de trabajo |
| 出版日付: | 2019 |
| その他の書誌記述: | Let G = G1...Gl be a connected noncompact semisimple Lie group with Lie algebra g = g_1+g_2+....+ g_l acting topologically transitive on a manifold M. We obtain a geometric splitting of the metric on M that consider metrics on each G_i. Also we obtained a result about the isometry group of the manifold GX~N , where ~N is the universal covering of a leaf N of the normal foliation to the G-orbits. |
| 国: | Kérwá |
| 機関: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/80320 |
| オンライン・アクセス: | https://hdl.handle.net/10669/80320 |
| キーワード: | Bi-invariant metric Foliation Semisimple Lie group |