Minimization of the first eigenvalue in problems involving the bi-laplacian

 

Enregistré dans:
Détails bibliographiques
Auteurs: Anedda, Claudia, Cuccu, Fabrizio, Porru, Giovanni
Format: artículo original
Statut:Versión publicada
Date de publication:2009
Description:This paper concerns the minimization of the first eigenvalue in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the vibration of a non homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to minimize the first mode in the vibration of the corresponding plate.
Pays:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Langue:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/1422
Accès en ligne:https://revistas.ucr.ac.cr/index.php/matematica/article/view/1422
Mots-clés:bi-Laplacian
first eigenvalue
minimization
bi-Laplaciano
primer autovalor
minimización