Minimization of the first eigenvalue in problems involving the bi-laplacian
Enregistré dans:
| Auteurs: | , , |
|---|---|
| Format: | artículo original |
| Statut: | Versión publicada |
| Date de publication: | 2009 |
| Description: | This paper concerns the minimization of the first eigenvalue in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the vibration of a non homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to minimize the first mode in the vibration of the corresponding plate. |
| Pays: | Portal de Revistas UCR |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Langue: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/1422 |
| Accès en ligne: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/1422 |
| Mots-clés: | bi-Laplacian first eigenvalue minimization bi-Laplaciano primer autovalor minimización |