A partial differential equation model with age-structure and nonlinear recidivism: Conditions for a backward bifurcation and a general numerical implementation

 

שמור ב:
מידע ביבליוגרפי
Autores: Sánchez Peña, Fabio Ariel, Calvo Alpízar, Juan Gabriel, Segura Ugalde, Esteban, Feng, Zhilan
פורמט: artículo original
Fecha de Publicación:2019
תיאור:We formulate an age-structured three-staged nonlinear partial differential equation model that features nonlinear recidivism to the infected (infectious) class from the temporarily recovered class. Equilibria are computed, as well as local and global stability of the infection-free equilibrium. As a result, a backward-bifurcation exists under necessary and sufficient conditions. A generalized numerical framework is established and numerical experiments are explored for two positive solutions to exist in the infectious class.
País:Kérwá
מוסד:Universidad de Costa Rica
Repositorio:Kérwá
שפה:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/83420
גישה מקוונת:https://www.sciencedirect.com/science/article/pii/S0898122119303244
https://hdl.handle.net/10669/83420
מילת מפתח:Backward bifurcation
Age-structured model
Epidemic models
Finite difference methods