A partial differential equation model with age-structure and nonlinear recidivism: Conditions for a backward bifurcation and a general numerical implementation

 

Сохранить в:
Библиографические подробности
Авторы: Sánchez Peña, Fabio Ariel, Calvo Alpízar, Juan Gabriel, Segura Ugalde, Esteban, Feng, Zhilan
Формат: artículo original
Дата публикации:2019
Описание:We formulate an age-structured three-staged nonlinear partial differential equation model that features nonlinear recidivism to the infected (infectious) class from the temporarily recovered class. Equilibria are computed, as well as local and global stability of the infection-free equilibrium. As a result, a backward-bifurcation exists under necessary and sufficient conditions. A generalized numerical framework is established and numerical experiments are explored for two positive solutions to exist in the infectious class.
Страна:Kérwá
Институт:Universidad de Costa Rica
Repositorio:Kérwá
Язык:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/83420
Online-ссылка:https://www.sciencedirect.com/science/article/pii/S0898122119303244
https://hdl.handle.net/10669/83420
Ключевое слово:Backward bifurcation
Age-structured model
Epidemic models
Finite difference methods