Entrepreneurial success factors: An exploratory study based on Data Mining Techniques

 

Guardado en:
Detalles Bibliográficos
Autores: Messina, María, Hochsztain, Esther
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2015
Descripción:Since 2007, the CCEE Entrepreneurship Centre has developed a supporting program for entrepreneurs. A preliminary analysis to determine if the venture was successful or a failure is made to improve the program’s management . In this article, the authors identify the main factors associated with entrepreneurship’s success, and how they can anticipate entrepreneurship’s performance. The case study is based on a survey data applied to the Entrepreneurship Program participants. The two data mining techniques are decision trees and logistic regression. The results were consistent across both tech- niques. The findings show that the two most important elements to predict entrepreneurship’s success are fun- ding and previous experience as self-employed. The results provided very useful insight about the best ways to support entrepreneurship, how to encoura- ge entrepreneurs, and define tools or activities to impact positively ventures success in Uruguay, since similar stu- dies have not been developed.
País:Portal de Revistas TEC
Institución:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Lenguaje:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/2206
Acceso en línea:https://revistas.tec.ac.cr/index.php/tec_empresarial/article/view/2206
Palabra clave:Emprendedurismo
contexto emprendedor
minería de datos
éxito emprendedor
proceso emprendedor
Entrepreneurship
entrepreneurial context
dara mining
entrepreneurial success
entrepreneurship process