A machine learning proposal to predict poverty

 

Uloženo v:
Podrobná bibliografie
Autoři: Solís-Salazar, Martín, Madrigal-Sanabria, Julio
Médium: artículo original
Stav:Versión publicada
Datum vydání:2022
Popis:Due to the high rate of inclusion and exclusion errors of traditional methods (Proxy Mean Test) used for the identification of households in poverty condition and selection of the social assistance programs beneficiaries, this research analyzed different perspectives to predict households in poverty condition, using a machine learning model based on XGBoost. The models proposed were compared with baseline methods. The data used were taken from the 2019 household survey of Costa Rica. The results showed that at least one of our approaches using XGBoost gave the best balance between inclusion and exclusion errors. The best model to predict poverty and extreme poverty was build using an XGBoost with a classification approach.
Země:Portal de Revistas TEC
Instituce:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Jazyk:Inglés
Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/5766
On-line přístup:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5766
Klíčové slovo:Machine Learning
poverty prediction
Proxy Mean Test
Aprendizaje automático
predicción de la pobreza