Automated adenocarcinoma lung cancer tissue images segmentation based on clustering

 

Uloženo v:
Podrobná bibliografie
Autoři: Cervantes-Ramirez, Bryan, Siles, Francisco
Médium: artículo original
Stav:Versión publicada
Datum vydání:2022
Popis:Cancer is one of the main dead causes worldwide. It is re- sponsible for an approximate of 1 out of 6 deaths globally and lung cancer is along breast cancer, the most common types of cancer in the population, which confirms the importance of studies associated with it. This work presents an approach toward lung cancer histological tissue images segmentation based on colour. The proposed method for the segmentation is K-means clustering, providing promising results that may become as an assistance for pathologists, as it can help them reduce the time consumed reviewing the slides and giving a more objective perspective in order to provide a diagnose and specific treatment.
Země:Portal de Revistas TEC
Instituce:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Jazyk:Inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/6442
On-line přístup:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/6442
Klíčové slovo:Digital pathology
pattern recognition
lung cancer
Patología digital
reconocimiento de patrones
cáncer de pulmón