Para qué tantas hipótesis en el Criterio de la Integral
Kaydedildi:
| Yazar: | |
|---|---|
| Materyal Türü: | artículo original |
| Durum: | Versión publicada |
| Yayın Tarihi: | 2015 |
| Diğer Bilgiler: | Se repasa el planteo tradicional del Criterio de la Integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge. |
| Ülke: | Portal de Revistas TEC |
| Kurum: | Instituto Tecnológico de Costa Rica |
| Repositorio: | Portal de Revistas TEC |
| Dil: | Español |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/2137 |
| Online Erişim: | https://revistas.tec.ac.cr/index.php/matematica/article/view/2137 |
| Anahtar Kelime: | Series infinitas criterios de convergencia continuidad criterio integral |