Recurrence Patterns in the k-mino game

 

Tallennettuna:
Bibliografiset tiedot
Tekijät: Morales, César Andrés, Muñoz, José Herman, Rodríguez, Miguel Armando
Aineistotyyppi: artículo original
Tila:Versión publicada
Julkaisupäivä:2019
Kuvaus:In this work we study two generalizations to the double-6 domino tiles. In a general way, it is considered the k-minó, P(k, n), which consists in combining the numbers from 0 to n in groups of k. With this approach and using a new procedure it is found interesting recurrence patterns in function of the k and n parameters in order to obtain the number of pieces and the sum of the score of all pieces of the mentioned game. In a sequential way it is studied the domino P(2, n) and the trimino P(3, n) in order to generalize to P(k, n). The obtained results are related with the Pascal’s triangle and another mathematical topics as combinatorial, numerical sequences and series of higher-order, symmetric matrices, symmetric tensors, and complete graphs.
Maa:Portal de Revistas UCR
Organisaatio:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Kieli:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/36227
Linkit:https://revistas.ucr.ac.cr/index.php/matematica/article/view/36227
Sanahaku:domino
Pascal’s triangle
sequences
series
dominó
triángulo de Pascal
sucesiones