Una alternativa al Algoritmo Chaid de segmentación basada en entropía

 

Guardado en:
Detalles Bibliográficos
Autores: Galindo Villardón, María Purificación, Vicente Villardón, José Luis, Dorado Díaz, Ana, Vicente Galindo, Purificación, Patino Alonso, María Carmen
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2010
Descripción:The CHAID (Chi-Squared Automatic Interaction Detection) treebased segmentation technique has been found to be an effective approach for obtaining meaningful segments that are predictive of a K-category (nominal or ordinal) criterion variable. CHAID was designed to detect, in an automatic way, the  nteraction between several categorical or ordinal predictors in explaining a categorical response, but, this may not be true when Simpson’s paradox is present. This is due to the fact that CHAID is a forward selection algorithm based on the marginal counts. In this paper we propose a backwards elimination algorithm that starts with the full set of predictors (or full tree) and eliminates predictors progressively. The elimination procedure is based on Conditional Independence contrasts using the concept of entropy. The proposed procedure is compared to CHAID.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/2127
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/2127
Palabra clave:Segmentation
CHAID
entropy
conditional independence
Segmentación
entropía
independencia condicional