Teoría de nudos geométricos e isotopía poligonal

 

Guardado en:
Detalles Bibliográficos
Autor: Calvo Soto, Jorge Alberto
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2001
Descripción:The space of n-sided polygons embedded in euclidean three-space consists of a smooth manifold in which points correspond to piecewise linear or “geometric” knots, while paths correspond to isotopies which preserve the geometric structure of these knots. The topology of these spaces for the case n = 6 and n = 7 is described. In both of these cases, each knot space consists of five components, but contains only three (when n = 6) or four (when n = 7) topological knot types. Therefore “geometric knot equivalence” is strictly stronger than topological equivalence. This point is demonstrated by the hexagonal trefoils and heptagonalfigure-eight knots, which, unlike their topological counterparts, are not reversible. Extending these results to the cases n ≥ 8 will also be discussed.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/204
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/204
Palabra clave:polygonal knots
space polygons
knot spaces
knot invariants
nudos poligonales
polígonos espaciales
espacios de nudos
invariantes de nudos