Optimizing the quarantine cost for suppression of the COVID-19 epidemic in Mexico
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 2020 |
Descripción: | This paper is one of the few attempts to use the optimal control theory to find optimal quarantine strategies for eradication of the spread of the COVID-19 infection in the Mexican human population. This is achieved by introducing into the SEIR model a bounded control function of time that reflects these quarantine measures. The objective function to be minimized is the weighted sum of the total infection level in the population and the total cost of the quarantine. An optimal control problem reflecting the search for an effective quarantine strategy is stated and solved analytically and numerically. The properties of the corresponding optimal control are established analytically by applying the Pontryagin maximum principle. The optimal solution is obtained numerically by solving the two-point boundary value problem for the maximum principle using MATLAB software. A detailed discussion of the results and the corresponding practical conclusions are presented. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Inglés Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/42077 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/42077 |
Palabra clave: | coronavirus quarantine cost Pontryagin maximum principal optimal control costo de una cuarentena principio del máximo de Pontryagin control óptimo |