Optimizing the quarantine cost for suppression of the COVID-19 epidemic in Mexico

 

Uloženo v:
Podrobná bibliografie
Autoři: Choque Rivero, Abdon E., Khailov, Evgenii N., Grigorieva, Ellina V.
Médium: artículo original
Stav:Versión publicada
Datum vydání:2020
Popis:This paper is one of the few attempts to use the optimal control theory to find optimal quarantine strategies for eradication of the spread of the COVID-19 infection in the Mexican human population. This is achieved by introducing into the SEIR model a bounded control function of time that reflects these quarantine measures. The objective function to be minimized is the weighted sum of the total infection level in the population and the total cost of the quarantine. An optimal control problem reflecting the search for an effective quarantine strategy is stated and solved analytically and numerically. The properties of the corresponding optimal control are established analytically by applying the Pontryagin maximum principle. The optimal solution is obtained numerically by solving the two-point boundary value problem for the maximum principle using MATLAB software. A detailed discussion of the results and the corresponding practical conclusions are presented.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Inglés
Español
OAI Identifier:oai:portal.ucr.ac.cr:article/42077
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/42077
Klíčové slovo:coronavirus
quarantine cost
Pontryagin maximum principal
optimal control
costo de una cuarentena
principio del máximo de Pontryagin
control óptimo