Optimizing the quarantine cost for suppression of the COVID-19 epidemic in Mexico

 

Enregistré dans:
Détails bibliographiques
Auteurs: Choque Rivero, Abdon E., Khailov, Evgenii N., Grigorieva, Ellina V.
Format: artículo original
Statut:Versión publicada
Date de publication:2020
Description:This paper is one of the few attempts to use the optimal control theory to find optimal quarantine strategies for eradication of the spread of the COVID-19 infection in the Mexican human population. This is achieved by introducing into the SEIR model a bounded control function of time that reflects these quarantine measures. The objective function to be minimized is the weighted sum of the total infection level in the population and the total cost of the quarantine. An optimal control problem reflecting the search for an effective quarantine strategy is stated and solved analytically and numerically. The properties of the corresponding optimal control are established analytically by applying the Pontryagin maximum principle. The optimal solution is obtained numerically by solving the two-point boundary value problem for the maximum principle using MATLAB software. A detailed discussion of the results and the corresponding practical conclusions are presented.
Pays:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Langue:Inglés
Español
OAI Identifier:oai:portal.ucr.ac.cr:article/42077
Accès en ligne:https://revistas.ucr.ac.cr/index.php/matematica/article/view/42077
Mots-clés:coronavirus
quarantine cost
Pontryagin maximum principal
optimal control
costo de una cuarentena
principio del máximo de Pontryagin
control óptimo