Geodesic distribution in graph theory: Kullback-Leibler-Symmetric
保存先:
| 著者: | , |
|---|---|
| フォーマット: | artículo original |
| 状態: | Versión publicada |
| 出版日付: | 2014 |
| その他の書誌記述: | Kullback-Leibler information allow us to characterize a family of dis- tributions denominated Kullback-Leibler-Symmetric, which are distance functions and, under some restrictions, generate the Jensen’s equality shown by [1], in this paper denominated Jensen-Equal. On the other hand, [5] and [7] showed that graph theory gives conditions to define a new mea- surable space and, therefore, new distances, in particular, the distance characterized by [2], denominated Geodesic Distance. The interaction of these ideas allow us to define a new distribution, denominated Geodesic Distri- bution which, under graph theory as center and radius of a graph, we can to develop optimization methodologies based in probabilities of attendance. We obtain many applications and the proposal method is very adaptive. To illustrate, we apply this distribution in spatial statistics. |
| 国: | Portal de Revistas UCR |
| 機関: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| 言語: | Inglés |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/15185 |
| オンライン・アクセス: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/15185 |
| キーワード: | Kullback-Leibler information graph theory geodesic distance geodesic distribution información Kullback-Leibler teoría de grafos distancia geodésica distribución geodésica |