Estimation of a mixed effects model using a partially observed diffusion process

 

Guardado en:
Detalles Bibliográficos
Autores: Soto, José, Infante, Saba, Camacho, Franklin, Amaro, Isidro R.
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2019
Descripción:We consider a general mixed-effects model, where the variability of random effects of experimental individuals or units is incorporated through a stochastic differential equation. These models are useful for simultaneously analysing data from repeated measurements taken in discrete time and with errors. A Markov chain Monte Carlo algorithm was implemented to make the statistical inference a posteriori. A diagnostic analysis was carried out on the estimated parameters to detect if the model is suitable and show its convergence, in addition to the traces and posterior densities are shown. The methodology is illustrated using simulated data.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/36223
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/36223
Palabra clave:mixed effects models
stochastic differential equations
Markov chains; Monte Carlo algorithms
modelos de efectos mixtos
ecuaciones diferenciales estocásticas
algoritmos Monte Carlo por cadenas de Markov