Quasilineal theory of Kato
সংরক্ষণ করুন:
| লেখক: | |
|---|---|
| বিন্যাস: | artículo original |
| বর্তমান অবস্থা: | Versión publicada |
| প্রকাশনার তারিখ: | 2018 |
| বিবরন: | In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem. |
| দেশ: | Portal de Revistas UCR |
| প্রতিষ্ঠান: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| ভাষা: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/33617 |
| অনলাইন ব্যবহার করুন: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/33617 |
| মুখ্য শব্দ: | local existence and uniqueness theorems existence of generalized solutions applications of PDE in areas other than physics teorema de existencia local y unicidad existencia de soluciones generalizadas aplicaciones de EDP en áreas distintas de la física |