Quasilineal theory of Kato
Saved in:
Author: | |
---|---|
Format: | artículo original |
Status: | Versión publicada |
Publication Date: | 2018 |
Description: | In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem. |
Country: | Portal de Revistas UCR |
Institution: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Language: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/33617 |
Online Access: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/33617 |
Keyword: | local existence and uniqueness theorems existence of generalized solutions applications of PDE in areas other than physics teorema de existencia local y unicidad existencia de soluciones generalizadas aplicaciones de EDP en áreas distintas de la física |