Quasilineal theory of Kato

 

Tallennettuna:
Bibliografiset tiedot
Tekijä: Loza Rojas, César
Aineistotyyppi: artículo original
Tila:Versión publicada
Julkaisupäivä:2018
Kuvaus:In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem.
Maa:Portal de Revistas UCR
Organisaatio:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Kieli:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/33617
Linkit:https://revistas.ucr.ac.cr/index.php/matematica/article/view/33617
Sanahaku:local existence and uniqueness theorems
existence of generalized solutions
applications of PDE in areas other than physics
teorema de existencia local y unicidad
existencia de soluciones generalizadas
aplicaciones de EDP en áreas distintas de la física