Quasilineal theory of Kato
Salvato in:
| Autore: | |
|---|---|
| Natura: | artículo original |
| Status: | Versión publicada |
| Data di pubblicazione: | 2018 |
| Descrizione: | In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem. |
| Stato: | Portal de Revistas UCR |
| Istituzione: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Lingua: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/33617 |
| Accesso online: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/33617 |
| Keyword: | local existence and uniqueness theorems existence of generalized solutions applications of PDE in areas other than physics teorema de existencia local y unicidad existencia de soluciones generalizadas aplicaciones de EDP en áreas distintas de la física |