Quasilineal theory of Kato
保存先:
| 著者: | |
|---|---|
| フォーマット: | artículo original |
| 状態: | Versión publicada |
| 出版日付: | 2018 |
| その他の書誌記述: | In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem. |
| 国: | Portal de Revistas UCR |
| 機関: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| 言語: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/33617 |
| オンライン・アクセス: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/33617 |
| キーワード: | local existence and uniqueness theorems existence of generalized solutions applications of PDE in areas other than physics teorema de existencia local y unicidad existencia de soluciones generalizadas aplicaciones de EDP en áreas distintas de la física |