Quasilineal theory of Kato
        Zapisane w:
      
    
                  | Autor: | |
|---|---|
| Format: | artículo original | 
| Status: | Versión publicada | 
| Data wydania: | 2018 | 
| Opis: | In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem. | 
| Kraj: | Portal de Revistas UCR | 
| Instytucja: | Universidad de Costa Rica | 
| Repositorio: | Portal de Revistas UCR | 
| Język: | Español | 
| OAI Identifier: | oai:portal.ucr.ac.cr:article/33617 | 
| Dostęp online: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/33617 | 
| Słowo kluczowe: | local existence and uniqueness theorems existence of generalized solutions applications of PDE in areas other than physics teorema de existencia local y unicidad existencia de soluciones generalizadas aplicaciones de EDP en áreas distintas de la física | 
 
    