Quasilineal theory of Kato

 

Đã lưu trong:
Chi tiết về thư mục
Tác giả: Loza Rojas, César
Định dạng: artículo original
Trạng thái:Versión publicada
Ngày xuất bản:2018
Miêu tả:In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem.
Quốc gia:Portal de Revistas UCR
Tổ chức giáo dục:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Ngôn ngữ:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/33617
Truy cập trực tuyến:https://revistas.ucr.ac.cr/index.php/matematica/article/view/33617
Từ khóa:local existence and uniqueness theorems
existence of generalized solutions
applications of PDE in areas other than physics
teorema de existencia local y unicidad
existencia de soluciones generalizadas
aplicaciones de EDP en áreas distintas de la física