Hamiltonian cycles that pass through of a linear forest in bipartitos grafos balanced
Saved in:
| Authors: | , , |
|---|---|
| Format: | artículo original |
| Status: | Versión publicada |
| Publication Date: | 2018 |
| Description: | Let G = (A ∪ B, E) be a bipartite graph whith |A| = |B| = n ≥ 4. A graph is linear forest if every component is a path. Let S be a set of medges of G that induces a linear forest. We prove that if σ1,1(G) = min{dG(u) + dG(v) : u ∈ A, v ∈ B, uv ̸∈ E(G)} ≥ (n+1)+m, then G contains (m + 1) hamiltonian cycles Cj such that |E(Cj ) ∩ S| = j, with j = 0, 1, . . . , m. |
| Country: | Portal de Revistas UCR |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Language: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/33908 |
| Online Access: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/33908 |
| Keyword: | bipartite graph linear forest hamiltonian cycle grafo bipartito bosque lineal ciclo hamiltoniano |