Minimization of the first eigenvalue in problems involving the bi-laplacian
Uloženo v:
| Autoři: | , , |
|---|---|
| Médium: | artículo original |
| Stav: | Versión publicada |
| Datum vydání: | 2009 |
| Popis: | This paper concerns the minimization of the first eigenvalue in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the vibration of a non homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to minimize the first mode in the vibration of the corresponding plate. |
| Země: | Portal de Revistas UCR |
| Instituce: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Jazyk: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/1422 |
| On-line přístup: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/1422 |
| Klíčové slovo: | bi-Laplacian first eigenvalue minimization bi-Laplaciano primer autovalor minimización |