Minimization of the first eigenvalue in problems involving the bi-laplacian

 

Uloženo v:
Podrobná bibliografie
Autoři: Anedda, Claudia, Cuccu, Fabrizio, Porru, Giovanni
Médium: artículo original
Stav:Versión publicada
Datum vydání:2009
Popis:This paper concerns the minimization of the first eigenvalue in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the vibration of a non homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to minimize the first mode in the vibration of the corresponding plate.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/1422
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/1422
Klíčové slovo:bi-Laplacian
first eigenvalue
minimization
bi-Laplaciano
primer autovalor
minimización