Minimization of the first eigenvalue in problems involving the bi-laplacian

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Anedda, Claudia, Cuccu, Fabrizio, Porru, Giovanni
Μορφή: artículo original
Κατάσταση:Versión publicada
Ημερομηνία έκδοσης:2009
Περιγραφή:This paper concerns the minimization of the first eigenvalue in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the vibration of a non homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to minimize the first mode in the vibration of the corresponding plate.
Χώρα:Portal de Revistas UCR
Ίδρυμα:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Γλώσσα:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/1422
Διαθέσιμο Online:https://revistas.ucr.ac.cr/index.php/matematica/article/view/1422
Λέξη-Κλειδί :bi-Laplacian
first eigenvalue
minimization
bi-Laplaciano
primer autovalor
minimización