Minimization of the first eigenvalue in problems involving the bi-laplacian

 

Tallennettuna:
Bibliografiset tiedot
Tekijät: Anedda, Claudia, Cuccu, Fabrizio, Porru, Giovanni
Aineistotyyppi: artículo original
Tila:Versión publicada
Julkaisupäivä:2009
Kuvaus:This paper concerns the minimization of the first eigenvalue in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the vibration of a non homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to minimize the first mode in the vibration of the corresponding plate.
Maa:Portal de Revistas UCR
Organisaatio:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Kieli:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/1422
Linkit:https://revistas.ucr.ac.cr/index.php/matematica/article/view/1422
Sanahaku:bi-Laplacian
first eigenvalue
minimization
bi-Laplaciano
primer autovalor
minimización