Conley Index and continuous dynamical systems

 

Guardat en:
Dades bibliogràfiques
Autors: Zapata Gómez, Yesenia, Dela-Rosa, Miguel Angél, Remigio-Juárez, Jair
Format: artículo original
Estat:Versión publicada
Data de publicació:2021
Descripció:The goal of this work is to apply topological methods to obtain results about continuous flows determined by differential equations. Specifically, we apply the Conley Index Theory to prove that, under certain assumptions, there is an invariant set which contains a non-trivial solution. The construction of this invariant set is purely topological and depends on the flow of the differential equation, but the existence of the non trivial solution is obtained as an application of homological techniques. In this survey paper we develop and precise these ideas, and in order to get a better understanding we include some examples and computations in some ordinary differential equations. This work is mostly based on [6].
Pais:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Idioma:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/44748
Accés en línia:https://revistas.ucr.ac.cr/index.php/matematica/article/view/44748
Paraula clau:Conley index
homology
continuous dynamics
homotopic equivalence
Wazewski principle
índice de Conley
homología
dinámica continua
equivalencia homotópica
principio de Wazewski