Conley Index and continuous dynamical systems

 

Uloženo v:
Podrobná bibliografie
Autoři: Zapata Gómez, Yesenia, Dela-Rosa, Miguel Angél, Remigio-Juárez, Jair
Médium: artículo original
Stav:Versión publicada
Datum vydání:2021
Popis:The goal of this work is to apply topological methods to obtain results about continuous flows determined by differential equations. Specifically, we apply the Conley Index Theory to prove that, under certain assumptions, there is an invariant set which contains a non-trivial solution. The construction of this invariant set is purely topological and depends on the flow of the differential equation, but the existence of the non trivial solution is obtained as an application of homological techniques. In this survey paper we develop and precise these ideas, and in order to get a better understanding we include some examples and computations in some ordinary differential equations. This work is mostly based on [6].
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/44748
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/44748
Klíčové slovo:Conley index
homology
continuous dynamics
homotopic equivalence
Wazewski principle
índice de Conley
homología
dinámica continua
equivalencia homotópica
principio de Wazewski