Generación de reglas estadísticas a partir de grandes bases de datos

 

Guardado en:
Detalles Bibliográficos
Autores: Schektman, Yves, Trejos Zelaya, Javier, Troupé, Marylène
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:1994
Descripción:Given a set of categorical variables, we want to predict one or more of them by the way rules. We propose an algorithm that (i) is guided by statistical results in a relational geometry where we use assymetrical association indices, and (ii) makes statistical and euclidian approximations. The iterative method we propose can obtain rules without introducing a priori their premises in the set of independent conjonctions analized by the generator at each step. The algorithm has a linear complexity with regard to the number of individual; this property makes it suitable for large data sets. We present results over data examples.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/106
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/106