Generación de reglas estadísticas a partir de grandes bases de datos
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 1994 |
Descripción: | Given a set of categorical variables, we want to predict one or more of them by the way rules. We propose an algorithm that (i) is guided by statistical results in a relational geometry where we use assymetrical association indices, and (ii) makes statistical and euclidian approximations. The iterative method we propose can obtain rules without introducing a priori their premises in the set of independent conjonctions analized by the generator at each step. The algorithm has a linear complexity with regard to the number of individual; this property makes it suitable for large data sets. We present results over data examples. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/106 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/106 |