Curvas ROC y vecinos cercanos, propuesta de un nuevo algoritmo de condensación

 

Guardado en:
Detalles Bibliográficos
Autores: Jiménez-Padilla, Raquel, Cuevas-Covarrubias, Carlos
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2011
Descripción:k-NN criteria are non parametric methods of statistical classificaction. They are accurate, versatile and distribution free. However,  their computational cost may be too expensive; especially for large sample sizes. We present a new condensation algorithm based on the Binormal model for ROC curves. It transforms the training sample into a small set of low dimensional vetors. Contrasting with other condensation techniques described in the literature, our proposal helps to control the exchange of accuracy for condensation onthe training sample. The results of a Monte Carlo study show that its performance can be very competitive in different realistic scenarios, resulting in better training samples than other frequently used methods.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/2112
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/2112
Palabra clave:statistical classification
area under the ROC curve
nearest neighbours
condensation
Monte Carlo
clasificación estadística
área bajo la curva ROC
modelo binormal
vecinos cercanos
condensación