Curvas ROC y vecinos cercanos, propuesta de un nuevo algoritmo de condensación

 

Kaydedildi:
Detaylı Bibliyografya
Yazarlar: Jiménez-Padilla, Raquel, Cuevas-Covarrubias, Carlos
Materyal Türü: artículo original
Durum:Versión publicada
Yayın Tarihi:2011
Diğer Bilgiler:k-NN criteria are non parametric methods of statistical classificaction. They are accurate, versatile and distribution free. However,  their computational cost may be too expensive; especially for large sample sizes. We present a new condensation algorithm based on the Binormal model for ROC curves. It transforms the training sample into a small set of low dimensional vetors. Contrasting with other condensation techniques described in the literature, our proposal helps to control the exchange of accuracy for condensation onthe training sample. The results of a Monte Carlo study show that its performance can be very competitive in different realistic scenarios, resulting in better training samples than other frequently used methods.
Ülke:Portal de Revistas UCR
Kurum:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Dil:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/2112
Online Erişim:https://revistas.ucr.ac.cr/index.php/matematica/article/view/2112
Anahtar Kelime:statistical classification
area under the ROC curve
nearest neighbours
condensation
Monte Carlo
clasificación estadística
área bajo la curva ROC
modelo binormal
vecinos cercanos
condensación