Uniqueness for quasi-equilibrium problems

 

Tallennettuna:
Bibliografiset tiedot
Tekijät: Navarro Rojas, Frank, Mitac Portugal, Raúl
Aineistotyyppi: artículo original
Tila:Versión publicada
Julkaisupäivä:2024
Kuvaus:This work presents a result on uniqueness for quasi-equilibrium problems (QEP), which does not require the continuity of Hölder’s hypothesis, which to our knowledge is the hypothesis on which uniqueness has been guaranteed for QEP until today. The basic idea of our approach is to start with a simple QEP, for example an equilibrium problem (EP), which we denote by QEP(t0) with t0 ∈ [0, 1), of which we will assume uniqueness of the solution, under some sufficient conditions of non-singularity given by our hypotheses we guarantee the existence of a continuous path of unique solutions of parameterized QEPs that begin in the solution of the QEP(t0) and ends in the solution of QEP(1) which is the original QEP. Finally we study these conditions based on certain types of matrices, for particular cases of QEPs that are popular in the literature.
Maa:Portal de Revistas UCR
Organisaatio:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Kieli:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/54615
Linkit:https://revistas.ucr.ac.cr/index.php/matematica/article/view/54615
Sanahaku:Problemas de cuasi-equilibrio
Unicidad
Enfoque de continuación
Función implícita
Quasi-equilibrium problems
Uniqueness
Continuation approach
Implicit function