Uniqueness for quasi-equilibrium problems
Guardado en:
Autores: | , |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 2024 |
Descripción: | This work presents a result on uniqueness for quasi-equilibrium problems (QEP), which does not require the continuity of Hölder’s hypothesis, which to our knowledge is the hypothesis on which uniqueness has been guaranteed for QEP until today. The basic idea of our approach is to start with a simple QEP, for example an equilibrium problem (EP), which we denote by QEP(t0) with t0 ∈ [0, 1), of which we will assume uniqueness of the solution, under some sufficient conditions of non-singularity given by our hypotheses we guarantee the existence of a continuous path of unique solutions of parameterized QEPs that begin in the solution of the QEP(t0) and ends in the solution of QEP(1) which is the original QEP. Finally we study these conditions based on certain types of matrices, for particular cases of QEPs that are popular in the literature. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/54615 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/54615 |
Palabra clave: | Problemas de cuasi-equilibrio Unicidad Enfoque de continuación Función implícita Quasi-equilibrium problems Uniqueness Continuation approach Implicit function |