The BPS preconditioner on Beowulf cluster
Guardado en:
Autores: | , , , , |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 2009 |
Descripción: | This work presents the implementation on a Linux Cluster of a parallel preconditioner for the solution of the linear system resulting from the finite element discretization of a 2D second order elliptic boundary value problem. The numerical method, proposed by Bramble, Pasciak and Schatz, is developed using Domain Decomposition techniques, which are based on the splitting of the computational domain into subregionsof smaller size, enforcing suitable compatibility conditions. The Fortran code is implemented using PETSc: a suite of data structures and routines devoted to the scientific parallel computing and based on the MPI standard for all message-passing communications. The main interest of the paper is to present an efficient and portable code for the solution of large-scale linear systems and to investigate how the architecturalaspects of the cluster influence the performance of the considered algorithm. We provide an analysis of the execution times as well as of the scalability, using as test case the classical Poisson equation with Dirichlet boundary conditions. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/1424 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/1424 |
Palabra clave: | Domain Decomposition Parallelization Partial Differential Equation Preconditioner Beowulf Cluster Descomposición de Dominio Paralelización Ecuaciones a las Derivadas Parciales Precondicionador |