The BPS preconditioner on Beowulf cluster

 

Uloženo v:
Podrobná bibliografie
Autoři: Salas-Huertas, Oscar, Marazzina, Daniele, Rovida, Sergio, Sacchi, Giovanni, Scacchi, Simone
Médium: artículo original
Stav:Versión publicada
Datum vydání:2009
Popis:This work presents the implementation on a Linux Cluster of a parallel preconditioner for the solution of the linear system resulting from the finite element discretization of a 2D second order elliptic boundary value problem. The numerical method, proposed by Bramble, Pasciak and Schatz, is developed using Domain Decomposition techniques, which are based on the splitting of the computational domain into subregionsof smaller size, enforcing suitable compatibility conditions. The Fortran code is implemented using PETSc: a suite of data structures and routines devoted to the scientific parallel computing and based on the MPI standard for all message-passing communications. The main interest of the paper is to present an efficient and portable code for the solution of large-scale linear systems and to investigate how the architecturalaspects of the cluster influence the performance of the considered algorithm. We provide an analysis of the execution times as well as of the scalability, using as test case the classical Poisson equation with Dirichlet boundary conditions.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/1424
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/1424
Klíčové slovo:Domain Decomposition
Parallelization
Partial Differential Equation
Preconditioner
Beowulf Cluster
Descomposición de Dominio
Paralelización
Ecuaciones a las Derivadas Parciales
Precondicionador